import math from logging import getLogger import numpy as np import torch import torch.nn as nn import transformers logger = getLogger(__name__) try: import autogptq_cuda_256 import autogptq_cuda_64 _autogptq_cuda_available = True except ImportError: logger.warning('CUDA extension not installed.') autogptq_cuda_256 = None autogptq_cuda_64 = None _autogptq_cuda_available = False class QuantLinear(nn.Module): QUANT_TYPE = "cuda" def __init__( self, bits, group_size, infeatures, outfeatures, bias, kernel_switch_threshold=128, trainable=False ): super().__init__() global _autogptq_cuda_available if bits not in [2, 3, 4, 8]: raise NotImplementedError("Only 2,3,4,8 bits are supported.") if trainable: _autogptq_cuda_available = False self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.maxq = 2 ** self.bits - 1 self.register_buffer( 'qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32) ) self.register_buffer( 'qzeros', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) ) self.register_buffer( 'scales', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) ) self.register_buffer( 'g_idx', torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) ) if bias: self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) else: self.bias = None # is performed by unpacking the weights and using torch.matmul if self.bits in [2, 4, 8]: self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0) elif self.bits == 3: self.wf = torch.tensor( [ [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0], [0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31], [0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0], ], dtype=torch.int32 ).reshape(1, 3, 12) self.kernel_switch_threshold = kernel_switch_threshold self.autogptq_cuda_available = _autogptq_cuda_available self.autogptq_cuda = autogptq_cuda_256 if infeatures % 256 != 0 or outfeatures % 256 != 0: self.autogptq_cuda = autogptq_cuda_64 if infeatures % 64 != 0 or outfeatures % 64 != 0: self.autogptq_cuda_available = False self.trainable = trainable def post_init(self): pass def pack(self, linear, scales, zeros, g_idx=None): W = linear.weight.data.clone() if isinstance(linear, nn.Conv2d): W = W.flatten(1) if isinstance(linear, transformers.pytorch_utils.Conv1D): W = W.t() self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( ( W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) i = 0 row = 0 qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) while row < qweight.shape[0]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 elif self.bits == 3: for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i)) i += 10 qweight[row] |= intweight[i] << 30 row += 1 qweight[row] |= (intweight[i] >> 2) & 1 i += 1 for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i) + 1) i += 10 qweight[row] |= intweight[i] << 31 row += 1 qweight[row] |= (intweight[i] >> 1) & 0x3 i += 1 for j in range(i, i + 10): qweight[row] |= intweight[j] << (3 * (j - i) + 2) i += 10 row += 1 else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 elif self.bits == 3: for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i)) i += 10 qzeros[:, col] |= zeros[:, i] << 30 col += 1 qzeros[:, col] |= (zeros[:, i] >> 2) & 1 i += 1 for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1) i += 10 qzeros[:, col] |= zeros[:, i] << 31 col += 1 qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3 i += 1 for j in range(i, i + 10): qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2) i += 10 col += 1 else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x: torch.Tensor): out_shape = x.shape[:-1] + (self.outfeatures,) x = x.reshape(-1, x.shape[-1]) if self.autogptq_cuda_available and ( self.kernel_switch_threshold == 0 or x.shape[0] < self.kernel_switch_threshold ): out = torch.zeros((x.shape[0], self.outfeatures), device=x.device, dtype=torch.float32) if self.bits == 2: self.autogptq_cuda.vecquant2matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) elif self.bits == 3: self.autogptq_cuda.vecquant3matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) elif self.bits == 4: self.autogptq_cuda.vecquant4matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) elif self.bits == 8: self.autogptq_cuda.vecquant8matmul(x.float(), self.qweight, out, self.scales.float(), self.qzeros, self.g_idx) else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") else: if self.wf.device != self.qzeros.device: self.wf = self.wf.to(self.qzeros.device) if self.bits in [2, 4, 8]: zeros = torch.bitwise_right_shift( torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), self.wf.unsqueeze(0) ).to(torch.int16 if self.bits == 8 else torch.int8) torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros) zeros = zeros + 1 zeros = zeros.reshape(self.scales.shape) weight = torch.bitwise_right_shift( torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1) ).to(torch.int16 if self.bits == 8 else torch.int8) torch.bitwise_and(weight, (2 ** self.bits) - 1, out=weight) elif self.bits == 3: zeros = self.qzeros.reshape( self.qzeros.shape[0], self.qzeros.shape[1] // 3, 3, 1 ).expand(-1, -1, -1, 12) zeros = (zeros >> self.wf.unsqueeze(0)) zeros[:, :, 0, 10] = (zeros[:, :, 0, 10] & 0x3) | ((zeros[:, :, 1, 0] << 2) & 0x4) zeros[:, :, 1, 11] = (zeros[:, :, 1, 11] & 0x1) | ((zeros[:, :, 2, 0] << 1) & 0x6) zeros = zeros & 0x7 zeros = torch.cat([zeros[:, :, 0, :11], zeros[:, :, 1, 1:12], zeros[:, :, 2, 1:11]], dim=2) zeros = zeros + 1 zeros = zeros.reshape(self.scales.shape) weight = self.qweight.reshape( self.qweight.shape[0] // 3, 3, 1, self.qweight.shape[1] ).expand(-1, -1, 12, -1) weight = (weight >> self.wf.unsqueeze(-1)) & 0x7 weight[:, 0, 10] = (weight[:, 0, 10] & 0x3) | ((weight[:, 1, 0] << 2) & 0x4) weight[:, 1, 11] = (weight[:, 1, 11] & 0x1) | ((weight[:, 2, 0] << 1) & 0x6) weight = weight & 0x7 weight = torch.cat([weight[:, 0, :11], weight[:, 1, 1:12], weight[:, 2, 1:11]], dim=1) else: raise NotImplementedError("Only 2,3,4,8 bits are supported.") weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2]) num_itr = self.g_idx.shape[0]//x.shape[-1] if num_itr == 1: weights = (self.scales[self.g_idx.long()] * (weight - zeros[self.g_idx.long()])) else: num_dim = self.g_idx.shape[0]//num_itr weights = [] for i in range(num_itr): scale_i = self.scales[:,i*num_dim:(i+1)*num_dim] weight_i = weight[:,i*num_dim:(i+1)*num_dim] zeros_i = zeros[:,i*num_dim:(i+1)*num_dim] g_idx_i = self.g_idx[i*num_dim:(i+1)*num_dim] weights.append(scale_i[g_idx_i.long()] * (weight_i - zeros_i[g_idx_i.long()])) weights = torch.cat(weights,dim=1) out = torch.matmul(x.half(), weights) out = out.half().reshape(out_shape) out = out + self.bias if self.bias is not None else out return out __all__ = ["QuantLinear"]