# Adapted from turboderp exllama: https://github.com/turboderp/exllama from logging import getLogger import torch import torch.nn as nn import math import numpy as np import transformers logger = getLogger(__name__) try: from exllama_kernels import make_q4, q4_matmul except ImportError: logger.error('exllama_kernels not installed.') raise # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def ext_make_q4(qweight, qzeros, scales, g_idx, device): """Construct Q4Matrix, return handle""" return make_q4(qweight, qzeros, scales, g_idx if g_idx is not None else none_tensor, device) def ext_q4_matmul(x, q4, q4_width): """Matrix multiplication, returns x @ q4""" outshape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype=torch.float16, device=x.device) q4_matmul(x, q4, output) return output.view(outshape) class QuantLinear(nn.Module): QUANT_TYPE = "exllama" """Linear layer implementation with per-group 4-bit quantization of the weights""" def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs): super().__init__() if bits != 4: raise ValueError( f"Exllama kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.") if trainable: raise NotImplementedError("Exllama kernel does not support training.") self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.trainable = trainable self.maxq = 2 ** self.bits - 1 assert infeatures % 32 == 0 assert infeatures % self.group_size == 0 assert outfeatures % 32 == 0 self.register_buffer( 'qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32) ) self.register_buffer( 'qzeros', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) ) self.register_buffer( 'scales', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) ) self.register_buffer( 'g_idx', torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) ) if bias: self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) else: self.bias = None def post_init(self): assert self.qweight.device.type == "cuda" assert self.qweight.device.index is not None self.width = self.qweight.shape[1] # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx. self.q4 = ext_make_q4( self.qweight, self.qzeros, self.scales, self.g_idx.to("cpu") if self._use_act_order else None, self.qweight.device.index ) def pack(self, linear, scales, zeros, g_idx=None): W = linear.weight.data.clone() if isinstance(linear, nn.Conv2d): W = W.flatten(1) if isinstance(linear, transformers.pytorch_utils.Conv1D): W = W.t() self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( ( W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) i = 0 row = 0 qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) while row < qweight.shape[0]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 4 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 4 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out = ext_q4_matmul(x.half(), self.q4, self.width) if self.bias is not None: out.add_(self.bias) return out