# Adapted from turboderp exllama: https://github.com/turboderp/exllama from exllama_kernels import make_q4, q4_matmul import torch import torch.nn as nn import math # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device = "meta") def ext_make_q4(qweight, qzeros, scales, g_idx, device): """Construct Q4Matrix, return handle""" return make_q4(qweight, qzeros, scales, g_idx if g_idx is not None else none_tensor, device) def ext_q4_matmul(x, q4, q4_width): """Matrix multiplication, returns x @ q4""" outshape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype = torch.float16, device = x.device) q4_matmul(x, q4, output) return output.view(outshape) class QuantLinear(nn.Module): QUANT_TYPE = "exllama" """Linear layer implementation with per-group 4-bit quantization of the weights""" def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs, ): super().__init__() if bits != 4: raise ValueError(f"Exllama kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.") self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.trainable = trainable self.maxq = 2 ** self.bits - 1 assert infeatures % 32 == 0 assert infeatures % self.group_size == 0 assert outfeatures % 32 == 0 self.register_buffer( 'qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32) ) self.register_buffer( 'qzeros', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32) ) self.register_buffer( 'scales', torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16) ) self.register_buffer( 'g_idx', torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32) ) if bias: self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) else: self.bias = None def post_init(self): assert self.qweight.device.type == "cuda" assert self.qweight.device.index is not None self.width = self.qweight.shape[1] self.q4 = ext_make_q4( self.qweight, self.qzeros, self.scales, self.g_idx, self.qweight.device.index ) def pack(self, linear, scales, zeros, g_idx=None): raise NotImplementedError("Pack is not supported for the exllama implementation. Please open an issue.") def forward(self, x): out = ext_q4_matmul(x, self.q4, self.width) if self.bias is not None: out.add_(self.bias) return out