import os import argparse from auto_gptq.utils import Perplexity if __name__ == "__main__": """ Example usage. Default usage with GPT2 model: python examples/benchmark/perplexity.py Specify GPTQ quantized model: python examples/benchmark/perplexity.py \ --model_name TheBloke/open-llama-7b-open-instruct-GPTQ \ --model_basename gptq_model-4bit-128g \ --is_quantized Change your dataset: python examples/benchmark/perplexity.py --dataset_path tiny_shakespeare """ parser = argparse.ArgumentParser(description="Calculate Perplexity for a model.") parser.add_argument("--model_name", type=str, default='gpt2', help="Model name.") parser.add_argument("--model_basename", type=str, default=None, help="Model file's basename.") parser.add_argument("--n_ctx", type=int, default=512, help="Context size.") parser.add_argument("--n_batch", type=int, default=512, help="Batch size.") parser.add_argument("--device", type=str, default="auto", help="Device to use.") parser.add_argument("--dataset_path", type=str, default='wikitext', help="Path to the dataset.") parser.add_argument("--dataset_name", type=str, default=None, help="Name of the dataset.") parser.add_argument("--split", type=str, default='test', help="Dataset split to use.") parser.add_argument("--text_column", type=str, default='text', help="Column in the dataset containing the text.") parser.add_argument("--is_quantized", action=argparse.BooleanOptionalAction, default=False, help="Is the model GPTQ quantized?") args = parser.parse_args() os.environ["TOKENIZERS_PARALLELISM"] = "false" if args.is_quantized: from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM tokenizer = AutoTokenizer.from_pretrained(args.model_name) model = AutoGPTQForCausalLM.from_quantized( args.model_name, model_basename=args.model_basename, use_safetensors=True, trust_remote_code=True ) else: from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained(args.model_name) model = AutoModelForCausalLM.from_pretrained(args.model_name) ppl = Perplexity(model, tokenizer, args.device, args.dataset_path, args.dataset_name, args.split, args.text_column) ppl.calculate_perplexity(args.n_ctx, args.n_batch)