add triton support
This commit is contained in:
parent
d69eb227e6
commit
9c405b1628
6 changed files with 648 additions and 6 deletions
|
@ -338,6 +338,12 @@ class BaseGPTQForCausalLM(nn.Module):
|
|||
use_triton: bool = False
|
||||
):
|
||||
"""load quantized model from local disk"""
|
||||
if use_triton:
|
||||
from ..nn_modules.qlinear_triton import autotune_warmup_linear
|
||||
|
||||
logger.warning("use_triton will force moving the hole model to GPU, make sure you have enough VRAM.")
|
||||
device = "cuda:0"
|
||||
|
||||
config = AutoConfig.from_pretrained(save_dir, trust_remote_code=True)
|
||||
if config.model_type not in SUPPORTED_MODELS:
|
||||
raise TypeError(f"{config.model_type} isn't supported yet.")
|
||||
|
@ -386,6 +392,9 @@ class BaseGPTQForCausalLM(nn.Module):
|
|||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
if use_triton:
|
||||
autotune_warmup_linear(model, seqlen=model.seqlen)
|
||||
|
||||
return cls(model, True, quantize_config)
|
||||
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ from logging import getLogger
|
|||
import torch.nn as nn
|
||||
from transformers import AutoConfig
|
||||
|
||||
from ._const import SUPPORTED_MODELS
|
||||
from ._const import SUPPORTED_MODELS, CUDA
|
||||
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
@ -26,7 +26,7 @@ def get_module_by_name(model, module_name: str):
|
|||
|
||||
def make_quant(module, names, bits, groupsize, name='', use_triton=False):
|
||||
if use_triton:
|
||||
raise NotImplementedError("triton not supported yet")
|
||||
from ..nn_modules.qlinear_triton import QuantLinear
|
||||
else:
|
||||
from ..nn_modules.qlinear import QuantLinear
|
||||
|
||||
|
@ -42,9 +42,9 @@ def make_quant(module, names, bits, groupsize, name='', use_triton=False):
|
|||
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
|
||||
|
||||
|
||||
def pack_model(model, quantizers, bits, group_size, use_triton=False):
|
||||
def pack_model(model, quantizers, bits, group_size, use_triton=False, autotune_warmup: bool = False):
|
||||
if use_triton:
|
||||
raise NotImplementedError("triton not supported yet.")
|
||||
from ..nn_modules.qlinear_triton import QuantLinear, autotune_warmup_linear
|
||||
else:
|
||||
from ..nn_modules.qlinear import QuantLinear
|
||||
|
||||
|
@ -60,6 +60,12 @@ def pack_model(model, quantizers, bits, group_size, use_triton=False):
|
|||
qlayers[name].pack(layers[name], scale, zero, g_idx)
|
||||
logger.info('Model packed.')
|
||||
|
||||
if use_triton and autotune_warmup:
|
||||
logger.warning(
|
||||
"using autotune_warmup will move model to GPU, make sure you have enough VRAM to load the hole model."
|
||||
)
|
||||
autotune_warmup_linear(model.to(CUDA), seqlen=model.seqlen)
|
||||
|
||||
|
||||
def check_and_get_model_type(model_dir):
|
||||
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
||||
|
|
455
auto_gptq/nn_modules/qlinear_triton.py
Normal file
455
auto_gptq/nn_modules/qlinear_triton.py
Normal file
|
@ -0,0 +1,455 @@
|
|||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
from logging import getLogger
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
try:
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from .triton_utils import custom_autotune
|
||||
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=2,
|
||||
num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8},
|
||||
num_stages=3,
|
||||
num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
|
||||
num_stages=2,
|
||||
num_warps=4
|
||||
),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
|
||||
'perf_model': None,
|
||||
'top_k': None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def matmul_248_kernel(
|
||||
a_ptr, b_ptr, c_ptr,
|
||||
scales_ptr, zeros_ptr, g_ptr,
|
||||
M, N, K,
|
||||
bits, maxq,
|
||||
stride_am, stride_ak,
|
||||
stride_bk, stride_bn,
|
||||
stride_cm, stride_cn,
|
||||
stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr
|
||||
):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + (
|
||||
(offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn
|
||||
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_bn[None, :]
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
@custom_autotune.autotune(configs=[
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8},
|
||||
num_stages=4,
|
||||
num_warps=4
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8},
|
||||
num_stages=2,
|
||||
num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8},
|
||||
num_stages=3,
|
||||
num_warps=8
|
||||
),
|
||||
triton.Config(
|
||||
{'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8},
|
||||
num_stages=2,
|
||||
num_warps=4
|
||||
),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
nearest_power_of_two=True
|
||||
)
|
||||
@triton.jit
|
||||
def transpose_matmul_248_kernel(
|
||||
a_ptr, b_ptr, c_ptr,
|
||||
scales_ptr, zeros_ptr, g_ptr,
|
||||
M, N, K,
|
||||
bits, maxq,
|
||||
stride_am, stride_ak,
|
||||
stride_bk, stride_bn,
|
||||
stride_cm, stride_cn,
|
||||
stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr
|
||||
):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, N) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, K) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_k = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
||||
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + (
|
||||
(offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn
|
||||
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_bk
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
||||
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
|
||||
|
||||
shifter = (offs_bk % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_n):
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
b = tl.trans(b)
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_N
|
||||
b_ptrs += BLOCK_SIZE_N
|
||||
scales_ptrs += BLOCK_SIZE_N
|
||||
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
||||
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
except ImportError:
|
||||
logger.warning('triton not installed.')
|
||||
|
||||
|
||||
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
with torch.cuda.device(input.device):
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
|
||||
grid = lambda META: (
|
||||
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),
|
||||
)
|
||||
matmul_248_kernel[grid](
|
||||
input, qweight, output,
|
||||
scales, qzeros, g_idx,
|
||||
input.shape[0], qweight.shape[1], input.shape[1],
|
||||
bits, maxq,
|
||||
input.stride(0), input.stride(1),
|
||||
qweight.stride(0), qweight.stride(1),
|
||||
output.stride(0), output.stride(1), scales.stride(0),
|
||||
qzeros.stride(0)
|
||||
)
|
||||
return output
|
||||
|
||||
|
||||
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
with torch.cuda.device(input.device):
|
||||
output_dim = (qweight.shape[0] * 32) // bits
|
||||
output = torch.empty((input.shape[0], output_dim), device='cuda', dtype=torch.float16)
|
||||
grid = lambda META: (
|
||||
triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']),)
|
||||
transpose_matmul_248_kernel[grid](
|
||||
input, qweight, output,
|
||||
scales, qzeros, g_idx,
|
||||
input.shape[0], qweight.shape[1], output_dim,
|
||||
bits, maxq,
|
||||
input.stride(0), input.stride(1),
|
||||
qweight.stride(0), qweight.stride(1),
|
||||
output.stride(0), output.stride(1),
|
||||
scales.stride(0), qzeros.stride(0)
|
||||
)
|
||||
return output
|
||||
|
||||
|
||||
class QuantLinearFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
||||
ctx.bits, ctx.maxq = bits, maxq
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, qzeros, g_idx = ctx.saved_tensors
|
||||
bits, maxq = ctx.bits, ctx.maxq
|
||||
grad_input = None
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
return grad_input, None, None, None, None, None, None
|
||||
|
||||
|
||||
class QuantLinear(nn.Module):
|
||||
|
||||
def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
|
||||
super().__init__()
|
||||
if bits not in [2, 4, 8]:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
self.infeatures = infeatures
|
||||
self.outfeatures = outfeatures
|
||||
self.bits = bits
|
||||
self.maxq = 2 ** self.bits - 1
|
||||
self.groupsize = groupsize if groupsize != -1 else infeatures
|
||||
|
||||
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
|
||||
self.register_buffer('qzeros',
|
||||
torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits),
|
||||
dtype=torch.int32))
|
||||
self.register_buffer('scales',
|
||||
torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
|
||||
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
|
||||
if bias:
|
||||
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def pack(self, linear, scales, zeros, g_idx=None):
|
||||
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
||||
|
||||
scales = scales.t().contiguous()
|
||||
zeros = zeros.t().contiguous()
|
||||
scale_zeros = zeros * scales
|
||||
self.scales = scales.clone().half()
|
||||
if linear.bias is not None:
|
||||
self.bias = linear.bias.clone().half()
|
||||
|
||||
intweight = []
|
||||
for idx in range(self.infeatures):
|
||||
intweight.append(torch.round(
|
||||
(linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(
|
||||
torch.int)[:, None])
|
||||
intweight = torch.cat(intweight, dim=1)
|
||||
intweight = intweight.t().contiguous()
|
||||
intweight = intweight.numpy().astype(np.uint32)
|
||||
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
|
||||
i = 0
|
||||
row = 0
|
||||
while row < qweight.shape[0]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
row += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
qweight = qweight.astype(np.int32)
|
||||
self.qweight = torch.from_numpy(qweight)
|
||||
|
||||
zeros -= 1
|
||||
zeros = zeros.numpy().astype(np.uint32)
|
||||
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
||||
i = 0
|
||||
col = 0
|
||||
while col < qzeros.shape[1]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
col += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
qzeros = qzeros.astype(np.int32)
|
||||
self.qzeros = torch.from_numpy(qzeros)
|
||||
|
||||
def forward(self, x):
|
||||
out_shape = x.shape[:-1] + (self.outfeatures,)
|
||||
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx,
|
||||
self.bits, self.maxq)
|
||||
out = out + self.bias if self.bias is not None else out
|
||||
return out.reshape(out_shape)
|
||||
|
||||
|
||||
def autotune_warmup_linear(model, transpose=False, seqlen=2048):
|
||||
"""
|
||||
Pre-tunes the quantized kernel
|
||||
"""
|
||||
from tqdm import tqdm
|
||||
|
||||
kn_values = {}
|
||||
|
||||
for _, m in model.named_modules():
|
||||
if not isinstance(m, QuantLinear):
|
||||
continue
|
||||
|
||||
k = m.infeatures
|
||||
n = m.outfeatures
|
||||
|
||||
if (k, n) not in kn_values:
|
||||
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq)
|
||||
|
||||
logger.info(f'Found {len(kn_values)} unique KN Linear values.')
|
||||
logger.info('Warming up autotune cache ...')
|
||||
with torch.no_grad():
|
||||
for m in tqdm(range(0, math.ceil(math.log2(seqlen)) + 1)):
|
||||
m = 2 ** m
|
||||
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items():
|
||||
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
|
||||
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
if transpose:
|
||||
a = torch.randn(m, n, dtype=torch.float16, device='cuda')
|
||||
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
del kn_values
|
||||
|
||||
|
||||
__all__ = [
|
||||
"QuantLinear",
|
||||
"autotune_warmup_linear"
|
||||
]
|
0
auto_gptq/nn_modules/triton_utils/__init__.py
Normal file
0
auto_gptq/nn_modules/triton_utils/__init__.py
Normal file
174
auto_gptq/nn_modules/triton_utils/custom_autotune.py
Normal file
174
auto_gptq/nn_modules/triton_utils/custom_autotune.py
Normal file
|
@ -0,0 +1,174 @@
|
|||
import builtins
|
||||
import math
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import triton
|
||||
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
"""
|
||||
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
|
||||
"""
|
||||
|
||||
|
||||
class CustomizedTritonAutoTuner(triton.KernelInterface):
|
||||
def __init__(
|
||||
self,
|
||||
fn,
|
||||
arg_names,
|
||||
configs,
|
||||
key,
|
||||
reset_to_zero,
|
||||
prune_configs_by: Dict = None,
|
||||
nearest_power_of_two: bool = False
|
||||
):
|
||||
if not configs:
|
||||
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
||||
else:
|
||||
self.configs = configs
|
||||
self.key_idx = [arg_names.index(k) for k in key]
|
||||
self.nearest_power_of_two = nearest_power_of_two
|
||||
self.cache = {}
|
||||
# hook to reset all required tensor to zeros before relaunching a kernel
|
||||
self.hook = lambda args: 0
|
||||
if reset_to_zero is not None:
|
||||
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
||||
|
||||
def _hook(args):
|
||||
for i in self.reset_idx:
|
||||
args[i].zero_()
|
||||
|
||||
self.hook = _hook
|
||||
self.arg_names = arg_names
|
||||
# prune configs
|
||||
if prune_configs_by:
|
||||
perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
|
||||
if 'early_config_prune' in prune_configs_by:
|
||||
early_config_prune = prune_configs_by['early_config_prune']
|
||||
else:
|
||||
perf_model, top_k, early_config_prune = None, None, None
|
||||
self.perf_model, self.configs_top_k = perf_model, top_k
|
||||
self.early_config_prune = early_config_prune
|
||||
self.fn = fn
|
||||
|
||||
def _bench(self, *args, config, **meta):
|
||||
# check for conflicts, i.e. meta-parameters both provided
|
||||
# as kwargs and by the autotuner
|
||||
conflicts = meta.keys() & config.kwargs.keys()
|
||||
if conflicts:
|
||||
raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
||||
" Make sure that you don't re-define auto-tuned symbols.")
|
||||
# augment meta-parameters with tunable ones
|
||||
current = dict(meta, **config.kwargs)
|
||||
|
||||
def kernel_call():
|
||||
if config.pre_hook:
|
||||
config.pre_hook(self.nargs)
|
||||
self.hook(args)
|
||||
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||
|
||||
try:
|
||||
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
||||
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
||||
return triton.testing.do_bench(kernel_call, percentiles=(0.5, 0.2, 0.8), rep=40)
|
||||
except triton.compiler.OutOfResources:
|
||||
return (float('inf'), float('inf'), float('inf'))
|
||||
|
||||
def run(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
if len(self.configs) > 1:
|
||||
key = tuple(args[i] for i in self.key_idx)
|
||||
|
||||
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
||||
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
||||
if self.nearest_power_of_two:
|
||||
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
|
||||
|
||||
if key not in self.cache:
|
||||
# prune configs
|
||||
pruned_configs = self.prune_configs(kwargs)
|
||||
bench_start = time.time()
|
||||
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
|
||||
bench_end = time.time()
|
||||
self.bench_time = bench_end - bench_start
|
||||
self.cache[key] = builtins.min(timings, key=timings.get)
|
||||
self.hook(args)
|
||||
self.configs_timings = timings
|
||||
config = self.cache[key]
|
||||
else:
|
||||
config = self.configs[0]
|
||||
self.best_config = config
|
||||
if config.pre_hook is not None:
|
||||
config.pre_hook(self.nargs)
|
||||
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||
|
||||
def prune_configs(self, kwargs):
|
||||
pruned_configs = self.configs
|
||||
if self.early_config_prune:
|
||||
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
||||
if self.perf_model:
|
||||
top_k = self.configs_top_k
|
||||
if isinstance(top_k, float) and top_k <= 1.0:
|
||||
top_k = int(len(self.configs) * top_k)
|
||||
if len(pruned_configs) > top_k:
|
||||
est_timing = {
|
||||
config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages,
|
||||
num_warps=config.num_warps) for config in pruned_configs}
|
||||
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
||||
return pruned_configs
|
||||
|
||||
def warmup(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
for config in self.prune_configs(kwargs):
|
||||
self.fn.warmup(
|
||||
*args,
|
||||
num_warps=config.num_warps,
|
||||
num_stages=config.num_stages,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
)
|
||||
self.nargs = None
|
||||
|
||||
|
||||
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
||||
def decorator(fn):
|
||||
return CustomizedTritonAutoTuner(
|
||||
fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two
|
||||
)
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def matmul248_kernel_config_pruner(configs, nargs):
|
||||
"""
|
||||
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
|
||||
"""
|
||||
m = max(2 ** int(math.ceil(math.log2(nargs['M']))), 16)
|
||||
n = max(2 ** int(math.ceil(math.log2(nargs['N']))), 16)
|
||||
k = max(2 ** int(math.ceil(math.log2(nargs['K']))), 16)
|
||||
|
||||
used = set()
|
||||
for config in configs:
|
||||
block_size_m = min(m, config.kwargs['BLOCK_SIZE_M'])
|
||||
block_size_n = min(n, config.kwargs['BLOCK_SIZE_N'])
|
||||
block_size_k = min(k, config.kwargs['BLOCK_SIZE_K'])
|
||||
group_size_m = config.kwargs['GROUP_SIZE_M']
|
||||
|
||||
if (block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps) in used:
|
||||
continue
|
||||
|
||||
used.add((block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps))
|
||||
yield triton.Config(
|
||||
{
|
||||
'BLOCK_SIZE_M': block_size_m,
|
||||
'BLOCK_SIZE_N': block_size_n,
|
||||
'BLOCK_SIZE_K': block_size_k,
|
||||
'GROUP_SIZE_M': group_size_m
|
||||
},
|
||||
num_stages=config.num_stages,
|
||||
num_warps=config.num_warps
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["autotune"]
|
|
@ -1,7 +1,5 @@
|
|||
import math
|
||||
from logging import getLogger
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue