Update README.md

merge the example code of downloading from and uploading to HF Hub into simplest usage code above to keep README compact.
This commit is contained in:
潘其威(William) 2023-05-30 05:49:29 +08:00 committed by GitHub
parent b7bb50b4d5
commit 17db71491f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -115,10 +115,26 @@ model.save_quantized(quantized_model_dir)
# save quantized model using safetensors # save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True) model.save_quantized(quantized_model_dir, use_safetensors=True)
# push quantized model to Hugging Face Hub.
# to use use_auth_token=True, Login first via huggingface-cli login.
# or pass explcit token with: use_auth_token="hf_xxxxxxx"
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
# alternatively you can save and push at the same time
# (uncomment the following three lines to enable this feature)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
# load quantized model to the first GPU # load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir) model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir)
# download quantized model from Hugging Face Hub and load to the first GPU
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
# inference with model.generate # inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0])) print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))
@ -127,59 +143,6 @@ pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto-gptq is")[0]["generated_text"]) print(pipeline("auto-gptq is")[0]["generated_text"])
``` ```
The following example demonstrates use of Hugging Face Hub for model downloading and uploading:
```python
from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
pretrained_model = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model, use_fast=True)
examples = [
tokenizer(
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
)
]
quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128
desc_act=True # use desc_act for higher inference quality from quantized model
)
# Load un-quantized model. By default, the model will always be loaded into CPU memory
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model, quantize_config)
# Quantize model Examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
model.quantize(examples, use_triton=False)
# save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)
repo_id = f"YourUserName/{quantized_model_dir}"
# Push quantized model to Hugging Face Hub.
# To use use_auth_token=True, Login first via huggingface-cli login.
# Or pass explcit token with: use_auth_token="hf_xxxxxxx"
commit_message = f"AutoGPTQ model for {pretrained_model}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
# Alternatively you can save and push at the same time with:
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
# Load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
# Inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to("cuda:0"))[0]))
```
For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py) For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py)
### Customize Model ### Customize Model