support gqa

This commit is contained in:
qwopqwop200 2023-08-07 19:00:05 +09:00 committed by GitHub
parent 2f48780165
commit 11afc47f7f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -2,34 +2,45 @@ import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
from ._fused_base import FusedBaseAttentionModule
from ..utils.import_utils import compare_pytorch_version, dynamically_import_QuantLinear
class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
hidden_size,
num_heads,
config,
qkv_proj,
o_proj,
rotary_emb,
):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
if self.head_dim * num_heads != self.hidden_size:
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {num_heads})."
f" and `num_heads`: {self.num_heads})."
)
self.qkv_proj = qkv_proj
if self.config.pretraining_tp > 1:
raise NotImplementedError(f"pretraining_tp of 2 or more is currently not supported.")
if len(qkv_proj) == 1:
self.qkv_mode = 'qkv'
self.qkv_proj = qkv_proj[0]
elif len(qkv_proj) == 2:
self.qkv_mode = 'q,kv'
self.q_proj = qkv_proj[0]
self.kv_proj = qkv_proj[1]
self.o_proj = o_proj
self.rotary_emb = rotary_emb
@ -39,9 +50,9 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
def forward(
self,
hidden_states,
past_key_value=None,
attention_mask=None,
position_ids=None,
past_key_value=None,
output_attentions=False,
use_cache=False,
**kwargs
@ -49,14 +60,18 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
"""Input shape: Batch x Time x Channel"""
bsz, q_len, _ = hidden_states.size()
qkv_states = self.qkv_proj(hidden_states)
query_states, key_states, value_states = torch.split(qkv_states, self.hidden_size, dim=2)
if self.qkv_mode == 'qkv':
qkv_states = self.qkv_proj(hidden_states)
query_states, key_states, value_states = torch.split(qkv_states, self.hidden_size, dim=2)
elif self.qkv_mode == 'q,kv':
query_states = self.q_proj(hidden_states)
kv_states = self.kv_proj(hidden_states)
key_states, value_states = torch.split(kv_states, self.hidden_size, dim=2)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
@ -79,6 +94,10 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if compare_pytorch_version("v2.0.0", op="eq"):
attn_output = F.scaled_dot_product_attention(
query_states,
@ -93,7 +112,7 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
@ -103,7 +122,6 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
@ -151,41 +169,66 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
k_proj = m.k_proj
v_proj = m.v_proj
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
if QuantLinear.QUANT_TYPE == "exllama":
if desc_act:
# TODO: support it. The issue lies maybe in the line:
# int groups = qzeros.size(0);
# in exllama_ext.cpp
raise ValueError("Exllama kernel does not support query/key/value fusion with act-order. Please either use inject_fused_attention=False or disable_exllama=True.")
else:
if QuantLinear.QUANT_TYPE == "exllama" and desc_act:
# TODO: support it. The issue lies maybe in the line:
# int groups = qzeros.size(0);
# in exllama_ext.cpp
raise ValueError("Exllama kernel does not support query/key/value fusion with act-order. Please either use inject_fused_attention=False or disable_exllama=True.")
elif m.num_heads == m.num_key_value_heads:
qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
if QuantLinear.QUANT_TYPE == "exllama":
g_idx = None
else:
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qlinear_args = (
q_proj.bits,
q_proj.group_size,
q_proj.infeatures,
q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures,
True if q_proj.bias is not None else False,
)
qlinear_kwargs = {"trainable": trainable}
if (not desc_act or group_size == -1) and not use_triton:
qlinear_kwargs["use_cuda_fp16"] = use_cuda_fp16
qkv_layer = QuantLinear(*qlinear_args, **qlinear_kwargs)
qkv_layer.qweight = qweights
qkv_layer.qzeros = qzeros
qkv_layer.scales = scales
qkv_layer.g_idx = g_idx
qkv_layer.bias = bias
qkv_layers = [qkv_layer]
else:
g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0)
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qweights = torch.cat([k_proj.qweight, v_proj.qweight], dim=1)
qzeros = torch.cat([k_proj.qzeros, v_proj.qzeros], dim=1)
scales = torch.cat([k_proj.scales, v_proj.scales], dim=1)
if QuantLinear.QUANT_TYPE == "exllama":
g_idx = None
else:
g_idx = torch.cat([k_proj.g_idx, v_proj.g_idx], dim=0)
bias = torch.cat([k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qlinear_args = (
q_proj.bits,
q_proj.group_size,
q_proj.infeatures,
q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures,
True if q_proj.bias is not None else False,
)
qlinear_kwargs = {"trainable": trainable}
if (not desc_act or group_size == -1) and not use_triton:
qlinear_kwargs["use_cuda_fp16"] = use_cuda_fp16
qkv_layer = QuantLinear(*qlinear_args, **qlinear_kwargs)
qkv_layer.qweight = qweights
qkv_layer.qzeros = qzeros
qkv_layer.scales = scales
qkv_layer.g_idx = g_idx
qkv_layer.bias = bias
attn = cls(m.hidden_size, m.num_heads, qkv_layer, m.o_proj, m.rotary_emb)
qlinear_args = (
k_proj.bits,
k_proj.group_size,
k_proj.infeatures,
k_proj.outfeatures + v_proj.outfeatures,
True if q_proj.bias is not None else False,
)
qlinear_kwargs = {"trainable": trainable}
if (not desc_act or group_size == -1) and not use_triton:
qlinear_kwargs["use_cuda_fp16"] = use_cuda_fp16
kv_layer = QuantLinear(*qlinear_args, **qlinear_kwargs)
kv_layer.qweight = qweights
kv_layer.qzeros = qzeros
kv_layer.scales = scales
kv_layer.g_idx = g_idx
kv_layer.bias = bias
qkv_layers = [q_proj, kv_layer]
attn = cls(m.config, qkv_layers, m.o_proj, m.rotary_emb)
if '.' in name:
parent_name = name.rsplit('.', 1)[0]
@ -197,6 +240,3 @@ class FusedLlamaAttentionForQuantizedModel(FusedBaseAttentionModule):
child_name = name
setattr(parent, child_name, attn)
__all__ = ["FusedLlamaAttentionForQuantizedModel"]