Add support for Falcon as part of Transformers 4.33.0, including new Falcon 180B

This commit is contained in:
TheBloke 2023-09-06 18:03:33 +01:00
parent 1793227283
commit 02a87dce76
3 changed files with 65 additions and 0 deletions

View file

@ -24,6 +24,8 @@ SUPPORTED_MODELS = [
]
if compare_transformers_version("v4.28.0", op="ge"):
SUPPORTED_MODELS.append("llama")
if compare_transformers_version("v4.33.0", op="ge"):
SUPPORTED_MODELS.append("falcon")
EXLLAMA_DEFAULT_MAX_INPUT_LENGTH = 2048

View file

@ -29,6 +29,7 @@ GPTQ_CAUSAL_LM_MODEL_MAP = {
"codegen": CodeGenGPTQForCausalLM,
"RefinedWebModel": RWGPTQForCausalLM,
"RefinedWeb": RWGPTQForCausalLM,
"falcon": RWGPTQForCausalLM,
"baichuan": BaiChuanGPTQForCausalLM,
"internlm": InternLMGPTQForCausalLM,
"qwen": QwenGPTQForCausalLM,

View file

@ -0,0 +1,62 @@
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import argparse
parser = argparse.ArgumentParser(description='Simple AutoGPTQ example')
parser.add_argument('model_name_or_path', type=str, help='Model folder or repo')
parser.add_argument('--model_basename', type=str, help='Model file basename if model is not named gptq_model-Xb-Ygr')
parser.add_argument('--use_slow', action="store_true", help='Use slow tokenizer')
parser.add_argument('--use_safetensors', action="store_true", help='Model file basename if model is not named gptq_model-Xb-Ygr')
parser.add_argument('--use_triton', action="store_true", help='Use Triton for inference?')
parser.add_argument('--bits', type=int, default=4, help='Specify GPTQ bits. Only needed if no quantize_config.json is provided')
parser.add_argument('--group_size', type=int, default=128, help='Specify GPTQ group_size. Only needed if no quantize_config.json is provided')
parser.add_argument('--desc_act', action="store_true", help='Specify GPTQ desc_act. Only needed if no quantize_config.json is provided')
args = parser.parse_args()
quantized_model_dir = args.model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=not args.use_slow)
try:
quantize_config = BaseQuantizeConfig.from_pretrained(quantized_model_dir)
except:
quantize_config = BaseQuantizeConfig(
bits=args.bits,
group_size=args.group_size,
desc_act=args.desc_act
)
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir,
use_safetensors=True,
model_basename=args.model_basename,
device="cuda:0",
use_triton=args.use_triton,
quantize_config=quantize_config)
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)
prompt = "Tell me about AI"
prompt_template=f'''### Human: {prompt}
### Assistant:'''
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))