# Fill in the matrices P, F, H, R and I at the bottom # # This question requires NO CODING, just fill in the # matrices where indicated. Please do not delete or modify # any provided code OR comments. Good luck! from math import * class matrix: # implements basic operations of a matrix class def __init__(self, value): self.value = value self.dimx = len(value) self.dimy = len(value[0]) if value == [[]]: self.dimx = 0 def zero(self, dimx, dimy): # check if valid dimensions if dimx < 1 or dimy < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dimx self.dimy = dimy self.value = [[0 for row in range(dimy)] for col in range(dimx)] def identity(self, dim): # check if valid dimension if dim < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dim self.dimy = dim self.value = [[0 for row in range(dim)] for col in range(dim)] for i in range(dim): self.value[i][i] = 1 def show(self): for i in range(self.dimx): print self.value[i] print ' ' def __add__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimensions to add" else: # add if correct dimensions res = matrix([[]]) res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] + other.value[i][j] return res def __sub__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimensions to subtract" else: # subtract if correct dimensions res = matrix([[]]) res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] - other.value[i][j] return res def __mul__(self, other): # check if correct dimensions if self.dimy != other.dimx: raise ValueError, "Matrices must be m*n and n*p to multiply" else: # subtract if correct dimensions res = matrix([[]]) res.zero(self.dimx, other.dimy) for i in range(self.dimx): for j in range(other.dimy): for k in range(self.dimy): res.value[i][j] += self.value[i][k] * other.value[k][j] return res def transpose(self): # compute transpose res = matrix([[]]) res.zero(self.dimy, self.dimx) for i in range(self.dimx): for j in range(self.dimy): res.value[j][i] = self.value[i][j] return res # Thanks to Ernesto P. Adorio for use of Cholesky and CholeskyInverse functions def Cholesky(self, ztol=1.0e-5): # Computes the upper triangular Cholesky factorization of # a positive definite matrix. res = matrix([[]]) res.zero(self.dimx, self.dimx) for i in range(self.dimx): S = sum([(res.value[k][i])**2 for k in range(i)]) d = self.value[i][i] - S if abs(d) < ztol: res.value[i][i] = 0.0 else: if d < 0.0: raise ValueError, "Matrix not positive-definite" res.value[i][i] = sqrt(d) for j in range(i+1, self.dimx): S = sum([res.value[k][i] * res.value[k][j] for k in range(self.dimx)]) if abs(S) < ztol: S = 0.0 res.value[i][j] = (self.value[i][j] - S)/res.value[i][i] return res def CholeskyInverse(self): # Computes inverse of matrix given its Cholesky upper Triangular # decomposition of matrix. res = matrix([[]]) res.zero(self.dimx, self.dimx) # Backward step for inverse. for j in reversed(range(self.dimx)): tjj = self.value[j][j] S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)]) res.value[j][j] = 1.0/tjj**2 - S/tjj for i in reversed(range(j)): res.value[j][i] = res.value[i][j] = -sum([self.value[i][k]*res.value[k][j] for k in range(i+1, self.dimx)])/self.value[i][i] return res def inverse(self): aux = self.Cholesky() res = aux.CholeskyInverse() return res def __repr__(self): return repr(self.value) ######################################## def filter(x, P): for n in range(len(measurements)): # prediction x = (F * x) + u P = F * P * F.transpose() # measurement update Z = matrix([measurements[n]]) y = Z.transpose() - (H * x) S = H * P * H.transpose() + R K = P * H.transpose() * S.inverse() x = x + (K * y) P = (I - (K * H)) * P print 'x= ' x.show() print 'P= ' P.show() ######################################## print "### 4-dimensional example ###" measurements = [[5., 10.], [6., 8.], [7., 6.], [8., 4.], [9., 2.], [10., 0.]] initial_xy = [4., 12.] # measurements = [[1., 4.], [6., 0.], [11., -4.], [16., -8.]] # initial_xy = [-4., 8.] # measurements = [[1., 17.], [1., 15.], [1., 13.], [1., 11.]] # initial_xy = [1., 19.] dt = 0.1 x = matrix([[initial_xy[0]], [initial_xy[1]], [0.], [0.]]) # initial state (location and velocity) u = matrix([[0.], [0.], [0.], [0.]]) # external motion #### DO NOT MODIFY ANYTHING ABOVE HERE #### #### fill this in, remember to use the matrix() function!: #### P = matrix([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 1000., 0.], [0., 0., 0., 1000.]]) F = matrix([[1., 0., dt, 0.], [0., 1., 0., dt], [0., 0., 1., 0.], [0., 0., 0., 1.]]) H = matrix([[1.0, 0., 0., 0.], [0., 1.0, 0., 0.]]) R = matrix([[0.1, 0.], [0., .1]]) I = matrix([[1.0, 0., 0., 0.], [0., 1.0, 0., 0.], [0., 0., 1.0, 0.], [0., 0., 0., 1.0]]) ###### DO NOT MODIFY ANYTHING HERE ####### filter(x, P)